Consider refreshing or asking about it on the Discord server.
Congratulations! You have beaten the game.
You completed the entire game in {{formatTime(player.winTime)}}.
Creator
randomtuba
Contributors Over The Years
TheMKeyHolder (AP Classic)
Yahtzee Master (AP Classic)
gapples2 (AP Rewritten, AP Current pre-v3.0)
downvoid (AP Current pre-v3.0)
DEMEMZEA (AP Current pre-v3.0)
yhvr (AP Current v3.0)
Major Testers
DEMEMZEA
downvoid
Saber
Yoshi128986
BsonHK
Maki
Minor Testers
Flamemaster
Letorin
Saturnus
Dest
gapples2
i do dank stuff
P.O.G.
Random Eye
anydot
Lewistodd1881
stl file
Inspirations Antimatter Dimensions (News Ticker, Square Root, Y-Quadratic Upgrades, Z Lab, Charged X Upgrades, and more)
Libraries
break_eternity.js (Made by Patashu)
Vue.js
jQuery
notify.js
panzoom.js
vis.js
Thanks to the r/incremental_games community for giving feedback that has improved this game. Thank you so much for playing!
Warning: You are beyond endgame. Gameplay may be unbalanced beyond this point.
Enter the E
You are currently in {{challengeHeaderDisplay()}}
{{regularFormat(player.totalPointsThisIntegration.max(1).log10().div(5e6),5)}}% Universe FilledUniversal Collapse Imminent{{regularFormat(player.totalPointsThisIntegration.max(1).log10().div(9e13),5)}}% Multiverse Filled{{regularFormat(player.totalPointsThisIntegration.max(1).log10().div(1.62e21),5)}}% Megaverse Filled Speedrun Timer: {{simpleFormatTime(player.speedrunTimer)}}
You need {{format("1e2950")}} x2 and {{format("1e660")}} Root Essence to go Complex.
You need {{format("1e270000")}} i and {{format("1e500")}} y2 to Integrate.
Global speed {{format(TemporalPlane.totalEffect())}}x
You are getting {{player.compChallenge == 6 && !player.inLostIntegration && player.buyables[1].add(player.buyables[2]).add(player.buyables[3]).gt(player.buyables[4].add(player.buyables[5]).add(player.buyables[6])) ? "less than " : ""}}{{formatSmall(pps())}} points per second
Note: Produced {{player.inLostIntegration ? "Generators" : "Buildings"}}{{player.zUnlocked ? " and Z" : ""}} {{player.inLostIntegration ? "are not lost on Reset" : "do not reset on Quadratic"}}! Note 2: W does not reset ever!
Instead of adding to your production, Functions multiply your point production. Multipliers to the g(n) and h(n) bases are softcapped at 50,000,000 if Dilations are currently active. f(n) * g(n) * h(n): {{format(BUYABLES[4].eff().mul(BUYABLES[5].eff()).mul(BUYABLES[6].eff()))}}
Current generator multiplier: {{format(GeneratorMultiplier.mult())}}x
Purchased x: {{formatWhole(player.abc[1])}}
Saving
Load Saves:
Visual
Gameplay
Algebraic Progression v3.0.1
Made by randomtuba
Thanks to downvoid, gapples2, and DEMEMZEA for bugfixing and some QoL mechanics.
Thanks to Yhvr for helping with the upgrade trees.
Game made with Vue.js, break_eternity.js, jQuery, notify.js, and panzoom.js
If you want to make a mod of this game, that's fine, just credit me in some way.
Note: Earlier versions of the game have bugs that will not be fixed.
General
You have bought a total of {{formatWhole(player.buyables[1].add(player.buyables[2]).add(player.buyables[3]))}} {{player.inLostIntegration ? "Generators" : "Buildings"}}. You have bought {{player.inLostIntegration ? "" : "a total of"}} {{formatWhole(player.buyables[4].add(player.inLostIntegration ? 0 : player.buyables[5]).add(player.inLostIntegration ? 0 : player.buyables[6]))}} {{player.inLostIntegration ? "Generator Multiplier upgrades" : "Functions"}}.
You have played this game for {{formatTime(player.timePlayed)}}. You have spent {{formatTime(player.gameTimePlayed)}} in the Point Universe.
You have produced {{format(player.totalPoints)}} points in total. You have produced {{format(player.totalPointsThisIntegration)}} points this {{player.inLostIntegration ? "Mandelbrot" : "Integration"}}.
You {{player.inLostIntegration ? "saw" : "have seen"}} {{formatWhole(player.newsMessagesSeen)}} news ticker message{{player.newsMessagesSeen != 1 ? "s" : ""}}. You have bought {{player.xUpgs.length}} X Upgrade{{player.xUpgs.length != 1 ? "s" : ""}}. You have completed the entire game {{formatWhole(player.totalGP)}} time{{player.totalGP.eq(1) ? "" : "s"}}.
QuadraticResetting
You have collected a total of {{formatWhole(player.totalx2)}} x2Reset Points.
You have gone QuadraticResetted {{formatWhole(player.quadratics)}} time{{player.quadratics.gt(1) || player.quadratics.lt(1) ? "s" : ""}}.
You have {{formatWhole(player.bankedQuadratics)}} Banked Quadratics.
You will gain {{formatWhole(player.quadratics.div(10).floor())}} Banked Quadratics on Complex.
Your fastest QuadraticReset is {{formatTime(player.gamePrestigeTimes[1])}}. ({{simpleFormatTime(player.prestigeTimes[1])}} real time)
You have spent {{formatTime(player.gamePrestigeTimes[0])}} in this QuadraticReset. ({{simpleFormatTime(player.prestigeTimes[0])}} real time)
You have bought {{player.quadUpgs.length}} QuadraticReset Table Upgrade{{player.quadUpgs.length != 1 ? "s" : ""}}.
You have entered Square Root {{player.sqrtEnters}} time{{player.sqrtEnters != 1 ? "s" : ""}}.
You have bought {{player.sqrtUpgs.length}} Square Root Upgrade{{player.sqrtUpgs.length != 1 ? "s" : ""}}.
The sum of a, b, and c is {{formatWhole(player.abc[1].add(player.abc[2]).add(player.abc[3]))}}.
You have bought a total of {{formatWhole(player.quadBuyables[1].add(player.quadBuyables[2]).add(player.quadBuyables[3]).add(player.quadBuyables[4]))}} Quadratic Formula Buyable{{player.quadBuyables[1].add(player.quadBuyables[2]).add(player.quadBuyables[3]).add(player.quadBuyables[4]).gt(1) || player.quadBuyables[1].add(player.quadBuyables[2]).add(player.quadBuyables[3]).add(player.quadBuyables[4]).lt(1) ? "s" : ""}}.
Y-Quadratic
You have collected a total of {{formatWhole(player.totaly2)}} y2.
You have gone Y-Quadratic {{formatWhole(player.yQuadratics)}} time{{player.yQuadratics.gt(1) || player.yQuadratics.lt(1) ? "s" : ""}}.
Your fastest Y-Quadratic is {{formatTime(player.gamePrestigeTimes[5])}}. ({{simpleFormatTime(player.prestigeTimes[5])}} real time)
You have spent {{formatTime(player.gamePrestigeTimes[4])}} in this Y-Quadratic. ({{simpleFormatTime(player.prestigeTimes[4])}} real time)
You have bought {{player.yQuadUpgs[0].length}} Y-Quadratic Upgrade{{player.yQuadUpgs[0].length != 1 ? "s" : ""}}. You have bought a total of {{formatWhole(player.varSynth.iExpBuyables[1].add(player.varSynth.iExpBuyables[2]))}} Revolution Buyable{{player.varSynth.iExpBuyables[1].add(player.varSynth.iExpBuyables[2]).gt(1) || player.varSynth.iExpBuyables[1].add(player.varSynth.iExpBuyables[2]).lt(1) ? "s" : ""}}. You have completed a total of {{formatWhole(player.yChalCompletions[1].add(player.yChalCompletions[2]).add(player.yChalCompletions[3]).add(player.yChalCompletions[4]).add(player.yChalCompletions[5]).add(player.yChalCompletions[6]))}} Y-Challenge tier{{player.yChalCompletions[1].add(player.yChalCompletions[2]).add(player.yChalCompletions[3]).add(player.yChalCompletions[4]).add(player.yChalCompletions[5]).add(player.yChalCompletions[6]).gt(1) || player.yChalCompletions[1].add(player.yChalCompletions[2]).add(player.yChalCompletions[3]).add(player.yChalCompletions[4]).add(player.yChalCompletions[5]).add(player.yChalCompletions[6]).lt(1) ? "s" : ""}}. You have bought a total of {{formatWhole(player.yPolynomials[3].bought.add(player.yPolynomials[4].bought).add(player.yPolynomials[5].bought).add(player.yPolynomials[6].bought).add(player.yPolynomials[7].bought).add(player.yPolynomials[8].bought).add(player.yPolynomials[9].bought).add(player.yPolynomials[10].bought))}} Y-Polynomial{{player.yPolynomials[3].bought.add(player.yPolynomials[4].bought).add(player.yPolynomials[5].bought).add(player.yPolynomials[6].bought).add(player.yPolynomials[7].bought).add(player.yPolynomials[8].bought).add(player.yPolynomials[9].bought).add(player.yPolynomials[10].bought) ? "s" : ""}}.
Complex
You have collected a total of {{formatWhole(player.totali)}} i.
You have gone Complex {{formatWhole(player.complexes)}} time{{player.complexes.gt(1) || player.complexes.lt(1) ? "s" : ""}}.
Your fastest Complex is {{formatTime(player.gamePrestigeTimes[3])}}. ({{simpleFormatTime(player.prestigeTimes[3])}} real time)
You have spent {{formatTime(player.gamePrestigeTimes[2])}} in this Complex. ({{simpleFormatTime(player.prestigeTimes[2])}} real time)
You have bought {{player.compUpgs[0].length + player.compUpgs[1].length}} Complex Upgrade{{(player.compUpgs[0].length + player.compUpgs[1].length) != 1 ? "s" : ""}} (excluding fourth-row Complex Upgrades). You have bought {{formatWhole(player.fourthRowCompUpgs[1].add(player.fourthRowCompUpgs[2]).add(player.fourthRowCompUpgs[3]).add(player.fourthRowCompUpgs[4]))}} level{{player.fourthRowCompUpgs[1].add(player.fourthRowCompUpgs[2]).add(player.fourthRowCompUpgs[3]).add(player.fourthRowCompUpgs[4]).gt(1) || player.fourthRowCompUpgs[1].add(player.fourthRowCompUpgs[2]).add(player.fourthRowCompUpgs[3]).add(player.fourthRowCompUpgs[4]).lt(1) ? "s" : ""}} of fourth-row Complex Upgrades. You have bought a total of {{formatWhole(player.compPlane[0][1].add(player.compPlane[0][2]).add(player.compPlane[0][3]).add(player.compPlane[0][4]))}} Complex Plane currenc{{!player.compPlane[0][1].add(player.compPlane[0][2]).add(player.compPlane[0][3]).add(player.compPlane[0][4]).eq(1) ? "ies" : "y"}}. You have bought a total of {{formatWhole(player.transformations.bought[1].add(player.transformations.bought[2]).add(player.transformations.bought[3]).add(player.transformations.bought[4]))}} Transformation{{player.transformations.bought[1].add(player.transformations.bought[2]).add(player.transformations.bought[3]).add(player.transformations.bought[4]).gt(1) || player.transformations.bought[1].add(player.transformations.bought[2]).add(player.transformations.bought[3]).add(player.transformations.bought[4]).lt(1) ? "s" : ""}}. You have a total of {{formatWhole(totalColliderLevels())}} Z-Collider level{{totalColliderLevels() != 1 ? "s" : ""}}. You have bought a total of {{formatWhole(player.quadBuyables[5].add(player.quadBuyables[6]).add(player.quadBuyables[7]).add(player.quadBuyables[8]))}} Imaginary Power Buyable{{player.quadBuyables[5].add(player.quadBuyables[6]).add(player.quadBuyables[7]).add(player.quadBuyables[8]).gt(1) || player.quadBuyables[5].add(player.quadBuyables[6]).add(player.quadBuyables[7]).add(player.quadBuyables[8]).lt(1) ? "s" : ""}}.
Polynomials
You have bought a total of {{formatWhole(player.polynomials[3].bought.add(player.polynomials[4].bought).add(player.polynomials[5].bought).add(player.polynomials[6].bought).add(player.polynomials[7].bought).add(player.polynomials[8].bought).add(player.polynomials[9].bought).add(player.polynomials[10].bought))}} Polynomial{{player.polynomials[3].bought.add(player.polynomials[4].bought).add(player.polynomials[5].bought).add(player.polynomials[6].bought).add(player.polynomials[7].bought).add(player.polynomials[8].bought).add(player.polynomials[9].bought).add(player.polynomials[10].bought).gt(1) || player.polynomials[3].bought.add(player.polynomials[4].bought).add(player.polynomials[5].bought).add(player.polynomials[6].bought).add(player.polynomials[7].bought).add(player.polynomials[8].bought).add(player.polynomials[9].bought).add(player.polynomials[10].bought).lt(1) ? "s" : ""}}.
You have bought a total of {{formatWhole(player.polynomials.buyables[1].add(player.polynomials.buyables[2]).add(player.polynomials.buyables[3]).add(player.polynomials.buyables[4]).add(player.polynomials.buyables[5]).add(player.polynomials.buyables[6]))}} Polynomial Buyable{{player.polynomials.buyables[1].add(player.polynomials.buyables[2]).add(player.polynomials.buyables[3]).add(player.polynomials.buyables[4]).add(player.polynomials.buyables[5]).add(player.polynomials.buyables[6]).gt(1) || player.polynomials.buyables[1].add(player.polynomials.buyables[2]).add(player.polynomials.buyables[3]).add(player.polynomials.buyables[4]).add(player.polynomials.buyables[5]).add(player.polynomials.buyables[6]).lt(1) ? "s" : ""}}.
You have entered Synthetic Division {{formatWhole(player.synthDivEnters)}} time{{player.synthDivEnters != 1 ? "s" : ""}}.
You have bought {{formatWhole(player.synthDivUpgs[0][1].add(player.synthDivUpgs[0][2]).add(player.synthDivUpgs[0][3]))}} repeatable Synthetic Division Upgrade{{player.synthDivUpgs[0][1].add(player.synthDivUpgs[0][2]).add(player.synthDivUpgs[0][3]).gt(1) || player.synthDivUpgs[0][1].add(player.synthDivUpgs[0][2]).add(player.synthDivUpgs[0][3]).lt(1) ? "s" : ""}}.
You have bought {{formatWhole(player.synthDivUpgs[1].length)}} non-repeatable Synthetic Division Upgrade{{player.synthDivUpgs[1].length ? "s" : ""}}.
IntegrationMandelbrot
You have collected a total of {{formatWhole(player.integration.totaldx)}} dxMandelbrot Essence.
You have IntegratedEntered the Mandelbrot {{formatWhole(player.integrations)}} time{{player.integrations.gt(1) || player.integrations.lt(1) ? "s" : ""}}.
Your fastest IntegrationMandelbrot is {{formatTime(player.gamePrestigeTimes[7])}}. ({{simpleFormatTime(player.prestigeTimes[7])}} real time)
You have spent {{formatTime(player.gamePrestigeTimes[6])}} in this IntegrationMandelbrot. ({{simpleFormatTime(player.prestigeTimes[6])}} real time)
You have bought {{formatWhole(player.integration.rebuyableUpgrades[1].add(player.integration.rebuyableUpgrades[2]).add(player.integration.rebuyableUpgrades[3]).add(player.integration.rebuyableUpgrades[4]).add(player.integration.rebuyableUpgrades[5]))}} rebuyable Integration Upgrade{{player.integration.rebuyableUpgrades[1].add(player.integration.rebuyableUpgrades[2]).add(player.integration.rebuyableUpgrades[3]).add(player.integration.rebuyableUpgrades[4]).add(player.integration.rebuyableUpgrades[5]).eq(1) ? "" : "s"}}.
You have bought {{formatWhole(player.integration.upgrades.prod.length)}} Production Tree upgrades.
You have bought {{formatWhole(player.integration.upgrades.qol.length)}} Perk Tree upgrades. You have entered The Limit {{formatWhole(player.integration.limitEnters)}} time{{player.integration.limitEnters != 1 ? "s" : ""}}. You have a completed a total of {{formatWhole(player.integration.chalCompletions[1].length+player.integration.chalCompletions[2]+player.integration.chalCompletions[3]+player.integration.chalCompletions[4]+player.integration.chalCompletions[5]+player.integration.chalCompletions[6].length+(+player.integration.chalCompletions[7]))}} Integration Challenge tier{{player.integration.chalCompletions[1].length+player.integration.chalCompletions[2]+player.integration.chalCompletions[3]+player.integration.chalCompletions[4]+player.integration.chalCompletions[5]+player.integration.chalCompletions[6].length+(+player.integration.chalCompletions[7]) != 1 ? "s" : ""}}. You have bought a total of {{formatWhole(player.integration.derivatives.buyables[1].add(player.integration.derivatives.buyables[2]).add(player.integration.derivatives.buyables[3]).add(player.integration.derivatives.buyables[4]).add(player.integration.derivatives.buyables[5]).add(player.integration.derivatives.buyables[6]).add(player.integration.derivatives.buyables[7]).add(player.integration.derivatives.buyables[8]))}} Derivative Buyable{{!player.integration.derivatives.buyables[1].add(player.integration.derivatives.buyables[2]).add(player.integration.derivatives.buyables[3]).add(player.integration.derivatives.buyables[4]).add(player.integration.derivatives.buyables[5]).add(player.integration.derivatives.buyables[6]).add(player.integration.derivatives.buyables[7]).add(player.integration.derivatives.buyables[8]).eq(1) ? "s" : ""}}.
Sinusoidal
You have collected a total of {{formatWhole(player.totalTriangles)}} triangle{{player.totalTriangles.eq(1) ? "" : "s"}}.
You have gone Sinusoidal {{formatWhole(player.sinusoidals)}} time{{player.sinusoidals.gt(1) || player.sinusoidals.lt(1) ? "s" : ""}}.
Your fastest Sinusoidal is {{formatTime(player.gamePrestigeTimes[9])}}. ({{simpleFormatTime(player.prestigeTimes[9])}} real time)
You have spent {{formatTime(player.gamePrestigeTimes[8])}} in this Sinusoidal. ({{simpleFormatTime(player.prestigeTimes[8])}} real time)
You have bought a total of {{formatWhole(player.trigFunctions.buyables[1].add(player.trigFunctions.buyables[2]).add(player.trigFunctions.buyables[3]).add(player.trigFunctions.buyables[4]).add(player.trigFunctions.buyables[5]).add(player.trigFunctions.buyables[6]))}} Trigonometric Function level{{!player.trigFunctions.buyables[1].add(player.trigFunctions.buyables[2]).add(player.trigFunctions.buyables[3]).add(player.trigFunctions.buyables[4]).add(player.trigFunctions.buyables[5]).add(player.trigFunctions.buyables[6]).eq(1) ? "s" : ""}}.
You have bought {{formatWhole(SinusoidalUpgrades.totalLevels())}} Sinusoidal Upgrade level{{SinusoidalUpgrades.totalLevels() != 1 ? "s" : ""}}. You have bought a total of {{formatWhole(player.unitCircle.purchases[0].add(player.unitCircle.purchases[1]))}} Unit Circle level{{!player.unitCircle.purchases[0].add(player.unitCircle.purchases[1]).eq(1) ? "s" : ""}}.
The sum of d, e, and f is {{formatWhole(player.pythTriples.def[1].add(player.pythTriples.def[2]).add(player.pythTriples.def[3]))}}.
You have bought a total of {{formatWhole(player.pythTriples.buyables[1].add(player.pythTriples.buyables[2]).add(player.pythTriples.buyables[3]).add(player.pythTriples.buyables[4]))}} Pythagorean Triples Buyable{{!player.pythTriples.buyables[1].add(player.pythTriples.buyables[2]).add(player.pythTriples.buyables[3]).add(player.pythTriples.buyables[4]).eq(1) ? "s" : ""}}.
Hypercomplex
You have bought {{formatWhole(player.hypercompUpgs.dynamic.length + player.hypercompUpgs.basic.length)}} Hypercomplex Upgrade{{player.hypercompUpgs.dynamic.length + player.hypercompUpgs.basic.length != 1 ? "s" : ""}}. You have bought a total of {{formatWhole(player.hypercompFlune.currencies[1].add(player.hypercompFlune.currencies[2]).add(player.hypercompFlune.currencies[3]).add(player.hypercompFlune.currencies[4]).add(player.hypercompFlune.currencies[5]).add(player.hypercompFlune.currencies[6]).add(player.hypercompFlune.currencies[7]).add(player.hypercompFlune.currencies[8]))}} Hypercomplex Flune currenc{{!player.hypercompFlune.currencies[1].add(player.hypercompFlune.currencies[2]).add(player.hypercompFlune.currencies[3]).add(player.hypercompFlune.currencies[4]).add(player.hypercompFlune.currencies[5]).add(player.hypercompFlune.currencies[6]).add(player.hypercompFlune.currencies[7]).add(player.hypercompFlune.currencies[8]).eq(1) ? "ies" : "y"}}.
Sinusoidal {{a}}. {{format(player.last10runs.sinusoidal[a-1].gain)}} triangle{{player.last10runs.sinusoidal[a-1].gain.eq(1) ? "" : "s"}} [+{{format(player.last10runs.sinusoidal[a-1].gain.div(player.last10runs.sinusoidal[a-1].time))}}/sec], {{formatTime(player.last10runs.sinusoidal[a-1].gameTime)}} ({{simpleFormatTime(player.last10runs.sinusoidal[a-1].time)}} real time){{a}}. Not happened yet Average: {{format(averagePrestigeStats("sinusoidal").gain)}} triangle{{averagePrestigeStats("sinusoidal").gain.eq(1) ? "" : "s"}} [+{{format(averagePrestigeStats("sinusoidal").gainOverTime)}}/sec], {{formatTime(averagePrestigeStats("sinusoidal").gameTime)}} ({{simpleFormatTime(averagePrestigeStats("sinusoidal").time)}} real time)
IntegrationMandelbrot {{a}}. {{format(player.last10runs.integration[a-1].gain)}} {{player.inLostIntegration ? "ME" : "dx"}} [+{{format(player.last10runs.integration[a-1].gain.div(player.last10runs.integration[a-1].time))}}/sec], {{formatTime(player.last10runs.integration[a-1].gameTime)}} ({{simpleFormatTime(player.last10runs.integration[a-1].time)}} real time){{a}}. Not happened yet Average: {{format(averagePrestigeStats("integration").gain)}} {{player.inLostIntegration ? "ME" : "dx"}} [+{{format(averagePrestigeStats("integration").gainOverTime)}}/sec], {{formatTime(averagePrestigeStats("integration").gameTime)}} ({{simpleFormatTime(averagePrestigeStats("integration").time)}} real time)
Complex {{a}}. {{format(player.last10runs.complex[a-1].gain)}} i [+{{format(player.last10runs.complex[a-1].gain.div(player.last10runs.complex[a-1].time))}}/sec], {{formatTime(player.last10runs.complex[a-1].gameTime)}} ({{simpleFormatTime(player.last10runs.complex[a-1].time)}} real time){{a}}. Not happened yet Average: {{format(averagePrestigeStats("complex").gain)}} i [+{{format(averagePrestigeStats("complex").gainOverTime)}}/sec], {{formatTime(averagePrestigeStats("complex").gameTime)}} ({{simpleFormatTime(averagePrestigeStats("complex").time)}} real time)
Y-Quadratic {{a}}. {{format(player.last10runs.yQuadratic[a-1].gain)}} y2 [+{{format(player.last10runs.yQuadratic[a-1].gain.div(player.last10runs.yQuadratic[a-1].time))}}/sec], {{formatTime(player.last10runs.yQuadratic[a-1].gameTime)}} ({{simpleFormatTime(player.last10runs.yQuadratic[a-1].time)}} real time){{a}}. Not happened yet Average: {{format(averagePrestigeStats("yQuadratic").gain)}} y2 [+{{format(averagePrestigeStats("yQuadratic").gainOverTime)}}/sec], {{formatTime(averagePrestigeStats("yQuadratic").gameTime)}} ({{simpleFormatTime(averagePrestigeStats("yQuadratic").time)}} real time)
QuadraticResetting {{a}}. {{format(player.last10runs.quadratic[a-1].gain)}} x2RP [+{{format(player.last10runs.quadratic[a-1].gain.div(player.last10runs.quadratic[a-1].time))}}/sec], {{formatTime(player.last10runs.quadratic[a-1].gameTime)}} ({{simpleFormatTime(player.last10runs.quadratic[a-1].time)}} real time){{a}}. Not happened yet Average: {{format(averagePrestigeStats("quadratic").gain)}} x2RP [+{{format(averagePrestigeStats("quadratic").gainOverTime)}}/sec], {{formatTime(averagePrestigeStats("quadratic").gameTime)}} ({{simpleFormatTime(averagePrestigeStats("quadratic").time)}} real time)
You haven't completed Challenge {{a}} yet.Challenge {{a}} Record: {{formatTime(player.challengeRecords[a])}}
The sum of your challenge records is {{formatTime(chalRecordsSum())}}
{{SPEEDRUN_MILESTONES[a-1].name}}: {{player.speedrunData[a-1][1] ? "Completed in " + simpleFormatTime(player.speedrunData[a-1][0]) : "Incomplete"}}
Buying an X Upgrade will remove 50% of the X Upgrade's cost (rounded down) from your X amount.
You have charged {{player.varSynth.chargedXUpgs.length}}/{{player.varSynth.totalxy.min(8).max(player.varSynth.chargedXUpgs.length)}} X Upgrades. Charging an X Upgrade costs 1 xy.
X Upgrade charges can be respecced on Y-Quadratic, if desired.
You have {{formatWhole(player.varSynth.xy)}} xy.
You have {{formatWhole(player.gamePoints)}} game point{{player.gamePoints.eq(1) ? "" : "s"}} (GP).
You gain 2 game points every time you click "Play Again" at the end of the game.
Game points can be spent on Permanent Upgrades that are not refundable, and are disabled in Speedrun Mode!
Permanent Upgrade effects are also unaffected by softcaps.
Permanent Upgrades:
You have {{formatWhole(player.x2)}} x2.
You have {{formatWhole(player.parabolas)}} parabolas, adding {{format(Decimal.mul(1e11,player.parabolas))}} to the X Factor Softcap start and adding {{format(xFactorSoftcapStrength().sub(0.45))}} to the X Factor Softcap strength exponent.
You have charged {{player.chargedQuadUpgs.length}}/{{player.y2z2.total.min(20)}} Quadratic Upgrades. Charging an Quadratic Upgrade costs 1 y2z2.
Quadratic Upgrade charges can be respecced on Integration/Sinusoidal, if desired.
You have {{formatWhole(player.y2z2.amount)}} y2z2.
You have sacrificed {{formatWhole(player.sacX)}} x (dividing Y cost scaling by {{format(sacEffect('x'))}}){{hasSU(6) ? ", " : " and "}}{{formatWhole(player.sacY)}} y (adding {{format(sacEffect('y'))}} to the g(n) and h(n) bases){{player.zUnlocked ? ", " : " and "}}{{formatWhole(player.sacX2)}} x2 (producing {{format(sacEffect('x2'))}} slope/second), and {{formatWhole(player.sacZ)}} z (multiplying the f(n) exponent by {{format(sacEffect('z'))}}).
You have {{format(player.slope)}} slope, multiplying production of buildings by {{format(slopeEffect())}}.
You have {{formatWhole(player.b)}} b (y-intercept), multiplying slope gain by {{format(bEffect(1))}}, multiplying sacrificed X and Y effects by {{format(bEffect(2))}}, and adding {{format(bEffect(3))}} to the slope effect exponent.
By default, clicking the "Sacrifice" button will set whatever currency you're sacrificing to 0.
If your sacrificed currency is greater than your current sacrificed amount, your sacrificed amount will increase.
Clicking the second button will change what currency you're sacrificing.
You currently have {{hasSU(6)?(player.zUnlocked?"4":"3"):"2"}} sacrifice options. (x, y{{hasSU(6)?", x²":""}}{{player.zUnlocked && hasSU(6)?", z":""}})
Transformations
Each Transformation type boosts the effect of a sacrificed currency, but only one can be activated at a time.
All Transformation types (except for Translations) cap at 40 levels.
Your Dilations are multiplying all other Transformation effects by {{format(transformEffect(5))}}x (applied after all softcaps), even if they're not active.
You have {{formatWhole(player.rootEssence)}} root essence. You have {{formatWhole(player.challengeEssence)}} challenge essence, multiplying root essence gain by {{format(ceEffect(1))}}x and quadratic power gain by {{format(ceEffect(2))}}x. Challenge essence is harshly softcapped after {{format(ceSoftcapStart())}} CE. Best Points in Square Root: {{format(player.bestPointsInSqrt)}}
Root Epicenter:
Note: A Root Epicenter level is considered "complete" when reaching at least 1e12 points inside of the level.
Endure harder Quadratics and reach the goal to get rewards!
Click a Challenge to enter it. Click it again to exit/finish. Note: Going Quadratic or entering Square Root will exit you from your current Challenge.
You have completed {{player.chalCompletions.length}}/10 Challenges.
You have {{format(player.quadPower)}} quadratic power. ({{format(qpGen())}}/sec) You have {{format(player.imagPower)}} imaginary power. ({{format(ipGen())}}/sec)
To generate Quadratic Power, a, b, and c when plugged into the Quadratic Formula must return a {{!hasMilestone(19) ? "real" : ""}}real solution.
(The one I'm talking about is (-b±√(b²-4ac)) / 2a) To generate Imaginary Power, a, b, and c must return a nonreal solution instead.
Base QP{{hasZlabMilestone(1,3) ? " and IP" : ""}} Generation Formula{{hasZlabMilestone(1,3) ? "s" : ""}}: (bc)a/2 - 0.5 {{player.abc[2].pow(2).round().gte(new Decimal(4).mul(player.abc[1]).mul(player.abc[3])) && player.abc[1].gt(0) ? "a, b, and c return a real solution!" : (hasMilestone(19) ? "a, b, and c return a nonreal solution, but that's okay somehow!" : "a, b, and c return a nonreal solution...")}}
You are generating {{format(CoordinatePlaneLI.xPerMin())}} x per minute. You are generating {{format(CoordinatePlaneLI.yPerMin())}} y per minute.
You have sacrificed {{formatWhole(player.sacY)}} y.
You have sacrificed {{formatWhole(player.sacX)}} points.
You have sacrificed {{formatWhole(player.sacX2)}} Reset Points.
You have sacrificed {{formatWhole(player.sacZ)}} z.
You have {{formatWhole(player.rootEssence)}} root essence.
You have {{format(player.challengeEssence)}} square roots. ({{format(SquareRootLI.sqrtGen())}}/sec)
The next milestone is at {{format(SquareRootLI.nextMilestone())}} square roots.
You have reached {{formatWhole(SquareRootLI.milestonesReached())}} milestone{{SquareRootLI.milestonesReached().eq(1) ? "" : "s"}}, multiplying generator production by {{format(SquareRootLI.milestoneEff(1))}} and x generation by {{format(SquareRootLI.milestoneEff(2))}}.
Click the button to select a Root Epicenter Task.
Then enter Square Root to go into the Root Epicenter Task!
RET Completions: {{player.chalCompletions.length}}
Description: {{RootEpicenterLI.descs[player.epicenterLevel]}}
Goal: {{format(RootEpicenterLI.goals[player.epicenterLevel])}} points
Reward: {{RootEpicenterLI.rewardDescs[player.epicenterLevel]}}
e = {{format(ExponentialCurve.e())}}
n = {{formatWhole(player.quadBuyables[8].mul(2))}}
Expression: en = {{format(ExponentialCurve.expression())}}
{{format(ExponentialCurve.effects(1))}}x square roots {{format(ExponentialCurve.effects(2))}}x reset points {{format(ExponentialCurve.effects(3))}}x i {{format(ExponentialCurve.effects(4))}}x root essence {{format(ExponentialCurve.effects(5))}}x x generation {{format(ExponentialCurve.effects(6))}}x y2 {{format(ExponentialCurve.effects(7))}}x Particles {{format(ExponentialCurve.effects(8))}}x y generation {{format(ExponentialCurve.effects(9))}}x X Powers
You have {{formatWhole(player.quadPower)}} geometric sequences. ({{formatWhole(player.imagPower)}} total)
Use Shift to see Y-Quadratic Upgrade costs before you've unlocked them.
Welcome to the Variable Synthesizer! Here you will be able to craft illegal variables that probably shouldn't exist. xy has already been unlocked for you, so you can start crafting those first.
Note: xy can be used to charge X Upgrades, so the Upgrades tab will be useful now!
You have {{formatWhole(player.varSynth.xy)}} xy. Your xy is multiplying circles and revolutions gain by {{format(xyBoost())}}x.
You have {{formatWhole(player.varSynth.x2y2)}} x2y2.
x2y2 is gained based on your current x2 and current y2, minus your current x2y2.
You have {{format(player.varSynth.circles)}} circles.
({{format(circleGen())}}/sec)
{{nextCircleMilestone()}}
Your circles are currently: by {{format(circleEffects(a))}}x
Your current expression is i{{format(player.varSynth.iExp)}}. ({{format(iExpGen())}}/sec)
({{format(player.varSynth.iExp.mul(90))}}° on a unit circle in the complex plane) Your i exponent is multiplying:
xi power generation by {{format(iExpEffects(1))}}x
yi power generation by {{format(iExpEffects(2))}}x
x2i power generation by {{format(iExpEffects(3))}}x
You have {{formatWhole(player.varSynth.revolutions)}} revolution{{!player.varSynth.revolutions.eq(1) ? "s" : ""}}, giving a {{format(player.varSynth.revolutions.pow(0.25).add(1))}}x multiplier to circles generation.
You have {{formatWhole(player.y2z2.amount)}} y2z2.
Endure harder Y-Quadratics and reach the goal to get rewards!
Unlike regular Challenges, Y-Challenges are infinitely completable, with their rewards growing stronger for every completion!
Click a Y-Challenge to enter it. Click it again to exit it. Note: Going Y-Quadratic will exit you from your current Y-Challenge.
You have {{format(player.yPolyPower)}} Y-Polynomial power, powering all Polynomial efficiencies by ^{{regularFormat(YPolynomials.powerEffect(),4)}}. Generation of Y-Polynomials is not affected by global speed.
You have {{format(player.yPolynomials[a+2].amount)}} y{{a+2}}, producing {{format(YPolynomials.gen(a+2))}} {{a == 1 ? "y-polynomial power" : ""}}y{{a+1}} per second.
(Efficiency: {{format(YPolynomials.efficiency(a+2))}}x)
Now that you have obtained Z, you should spend it in the Coordinate Realm subtab!
Endure harder Y-Quadratics and reach the goal to get rewards!
Unlike Complex Challenges, Y Challenges can only be completed once.
If you complete a Y Challenge while in RET -1, its reward is strengthened further.
Click a Y Challenge to enter it. Click it again to exit it. Note: Going Y-Quadratic will exit you from your current Y Challenge.
Y Power Product: {{format(YPowers.yPowerProduct())}}
This applies a power of ^{{regularFormat(YPowers.yPowerProductEffect(),3)}} to gain of all X Powers!
You have {{format(player.yPolynomials[a+2].amount)}} y{{a+2}}.
You are generating {{format(YPowers.gen(a+2))}} y{{a+2}} per second.
The next Y Powers tier will unlock at {{format(player.yPolynomials[9].amount.gte(1) ? 1e30 : (player.yPolynomials[7].amount.gte(1) ? 1e20 : 1e10))}} of the current highest Y Powers tier.
You have {{formatWhole(player.i)}} i.
You have {{format(player.j)}} j ({{format(HypercompUpgrades.jGen())}}/sec) and {{format(player.k)}} k ({{format(HypercompUpgrades.kGen())}}/sec).
You have gone Complex {{formatWhole(player.complexes)}} times.
You have {{formatWhole(player.upgradePoints[0])}} upgrade point{{!player.upgradePoints[0].floor().eq(1) ? "s" : ""}}. ({{formatWhole(player.upgradePoints[1])}} total)
Click on a Preset button to select the preset.
Use the 3 buttons above to purchase Upgrade Points with some of your previous currencies.
Upgrade points are spent on the 12 Complex Upgrades that can be respecced.
Fourth-row Complex Upgrades can be repeatedly bought to increase their effects.
Basic Complex Upgrades:
You have {{formatWhole(player.quaternions[0])}} quaternion{{!player.quaternions[0].eq(1) ? "s" : ""}}. ({{formatWhole(player.quaternions[1])}} total)
Click on a Preset button to select the preset.
Use the 3 buttons above to purchase quaternions with some of your previous currencies.
Quaternions are spent on the 16 Hypercomplex Upgrades that can be respecced. Note: Generation of j and k is not affected by global speed.
Basic Hypercomplex Upgrades:
You have {{formatWhole(player.compPlane[0][a])}} i, producing {{format(compPlaneGen(a))}} i power per second.
You have {{format(player.compPlane[1][a])}} i power, {{compPlaneEffectDisplay(a)}} Note: zi power generation is not affected by multipliers to Complex Plane currencies.
Generation of Hypercomplex Flune currencies is not affected by global speed.
You have {{formatWhole(player.hypercompFlune.currencies[a])}} {{HypercompFlune[a].title}}, producing {{format(HypercompFlune.gen(a))}} {{HypercompFlune[a].title}} power per second.
You have {{format(player.hypercompFlune.powers[a])}} {{HypercompFlune[a].title}} power, {{HypercompFlune[a].effectDisplay()}}.
You have completed {{formatWhole(ccTiers())}} Complex Challenge tier{{ccTiers() != 1 ? "s" : ""}}. Check your Milestones tab to see if you've unlocked anything!
Endure harder Complexes and reach the goal to get rewards!
Each Complex Challenge requires UP to unlock, and can be completed up to 5 times.
If you reach the Complex Challenge goal, click the button that would normally say "Exit Challenge" underneath the Complex Challenge. Note: You can only have 1 Complex Challenge unlocked at a time. Going Complex will exit you from your current Complex Challenge.
Autocompleting a CC tier will complete the next CC tier for the earliest Complex Challenge with less than 5 completions.
Time until next automatic CC completion: {{formatTime(player.integration.autoCCTimer)}} (real time) Time until all CC tiers completed: {{formatTime((maxAutoCCTimer()*((player.inLostIntegration?24:50)-ccTiers()))+player.integration.autoCCTimer)}} (real time)
Your {{formatWhole(player.z)}} z have generated {{format(player.zlab.zpower)}} Z-Power.
({{format(zpowerGen())}}/sec)
Your {{formatWhole(totalColliderLevels())}} total Z-Collider level{{totalColliderLevels() != 1 ? "s" : ""}} are multiplying i and y2 gain by {{format(Decimal.pow(1.25,totalColliderLevels()).pow(IntegrationUpgrades.yquadratic3.isBought() ? 10 : 1))}}.
Charging a Z-Collider will generate Z-Particles of its corresponding type, based on the square root of your Z-Power.
Leveling up your Z-Colliders will allow you to reach milestones with powerful bonuses and unlocks.
Z-Collider of {{COLLIDERS[a*2-2+b].title}} Level {{formatWhole(player.zlab.levels[a*2-2+b])}}/20
{{COLLIDERS[a*2-2+b].desc}}
You have {{format(player.zlab.particles[a*2-2+b])}} {{COLLIDERS[a*2-2+b].title}} Z-Particles
Z-Collider of Perpetuity Level {{formatWhole(player.zlab.levels[5])}}
Research until the end of time.
You have {{format(player.zlab.particles[5])}} Perpetuity Z-Particles
You have {{formatWhole(player.upgradePoints[0])}} upgrade point{{!player.upgradePoints[0].floor().eq(1) ? "s" : ""}}. ({{formatWhole(player.upgradePoints[1])}} total)
Click on a Preset button to select the preset.
Basic Complex Upgrades:
You have {{formatWhole(player.compPlane[0][1])}} step{{player.compPlane[0][1].eq(1) ? "" : "s"}}. ({{formatWhole(player.compPlane[0][2])}} total)
Location in Complex Plane: {{formatWhole(player.compPlane[0][3])}} {{player.compPlane[0][4].lt(0) ? "-" : "+"}} {{formatWhole(player.compPlane[0][4].abs())}}i
Each movement costs 1 step.
Complex Plane Effects:
{{format(ComplexPlaneLI.effects(1))}}x i gain
{{format(ComplexPlaneLI.effects(2))}}x RP gain
{{format(ComplexPlaneLI.effects(3))}}x generators
{{format(ComplexPlaneLI.effects(4))}}x square roots
You have completed {{formatWhole(ccTiers())}} Complex Challenge tier{{ccTiers() != 1 ? "s" : ""}}, giving {{formatWhole(ccTiers())}} free upgrade point{{ccTiers() != 1 ? "s" : ""}}.
Endure harder Complexes and reach the goal to get rewards!
Each Complex Challenge requires UP and a secondary requirement to unlock, and can be completed up to 3 times.
If you reach the Complex Challenge goal, click the button that would normally say "Exit Challenge" underneath the Complex Challenge. Note: You can only have 1 Complex Challenge unlocked at a time. Going Complex will exit you from your current Complex Challenge.
Autocompleting a CC tier will complete the next CC tier for the earliest Complex Challenge with less than 3 completions.
Time until next automatic CC completion: {{formatTime(player.integration.autoCCTimer)}} (real time) Time until all CC tiers completed: {{formatTime((maxAutoCCTimer()*(24-ccTiers()))+player.integration.autoCCTimer)}} (real time)
You have {{format(player.zlab.zpower)}} Z-Power.
You have {{format(player.zlab.particles[1])}} W Particles, multiplying i gain by {{format(ZLabLI.effects(1))}} and multiplying gain of Z Particles by {{format(ZLabLI.effects(2))}}.
You have {{format(player.zlab.particles[2])}} Y Particles, multiplying y2 gain by {{format(ZLabLI.effects(3))}} and multiplying gain of W Particles by {{format(ZLabLI.effects(4))}}.
You have {{format(player.zlab.particles[3])}} Z Particles, powering Complex Plane effects ^{{format(ZLabLI.effects(5))}} and multiplying gain of Y particles by {{format(ZLabLI.effects(6))}}.
X Power Product: {{format(XPowers.xPowerProduct())}}
This applies a power of ^{{regularFormat(XPowers.xPowerProductEffect(),3)}} to generators! You need {{format(1e10)}} x6 to unlock Mandelbrot Engine.Mandelbrot Engine: {{format(XPowers.mandelbrotEnginePercentage())}}% ({{format(XPowers.mandelbrotEngineEffect())}}x X Powers mult)
X Powers Boosters: {{formatWhole(player.triplers)}}
You have {{format(player.polynomials[a+1].amount)}} x{{a+1}}.
You are generating {{format(XPowers.gen(a+1))}} x{{a+1}} per second.
The next X Powers tier will unlock at {{format(player.polynomials[8].amount.gte(1) ? 1e30 : (player.polynomials[6].amount.gte(1) ? 1e20 : 1e10))}} of the current highest X Powers tier.
You have {{format(player.polyPower)}} polynomial power, powering point gain by ^{{regularFormat(polyPowerEffect(),4)}} and multiplying the efficiencies of the last 4 Polynomials by {{format(player.polyPower.pow(0.04).add(1))}}x.
Polynomial Factoring multiplier: {{format(player.integration.polyFactoringMult)}}x
Factoring your Polynomials{{SinusoidalUpgrades.has(13) ? "" : " resets your Polynomials and Polynomial Buyables, but"}} provides a multiplier to x10 efficiency.
Your Polynomial Factoring multiplier is kept on Integration.
You have {{format(player.polynomials[a+2].amount)}} x{{a+2}}, producing {{format(polynomialGen(a+2))}} {{a == 1 ? "polynomial power" : ""}}x{{a+1}} per second.
(Efficiency: {{format(polynomialEff(a+2))}}x)
Synthetic Division will unlock at 1 x6.
You have {{formatWhole(player.synthEssence)}} synthetic essence, boosting the efficiency of all polynomials by {{format(seEffect())}}x.
In Synthetic Division, Points and x2 are powered ^0.02. You gain Synthetic Essence (SE) based on your Points.
Best Points in Synthetic Division: {{format(player.bestPointsInSynthDiv)}}
You have {{formatWhole(player.integration.dx)}} dx.
You have {{formatWhole(player.integration.emptySets)}} empty set{{!player.integration.emptySets.eq(1) ? "s" : ""}}.
You have {{formatWhole(player.integration.effectSlots[0])}} effect slot{{player.integration.effectSlots[0] != 1 ? "s" : ""}}. ({{formatWhole(player.integration.effectSlots[1])}} total)
You have {{formatWhole(player.integration.typeSlots[0])}} type slot{{player.integration.typeSlots[0] != 1 ? "s" : ""}}. ({{formatWhole(player.integration.typeSlots[1])}} total)
Empty Sets Gain Formula:
i Amount: {{format(player.i.pow(1/270000).div(10))}}x
Polynomial Power: {{format((BasicHypercompUpgrades.has(4) ? player.polyPower.add(1).pow(1/100000) : player.polyPower.add(1).log10().div(500)).pow(NumberSets.effect(5,4)))}}x
Synthetic Essence: {{format(player.synthEssence.pow(1/50).div(10).max(1))}}x
Complexes: {{format(player.complexes.pow(1/10).div(10).max(1))}}x
Bonuses: {{format(IntegrationPrestige.emptySetGainBonuses())}}x Instability: /{{format(IntegrationPrestige.emptySetsFormula().div(new Decimal(1e50).mul(Derivatives.buyables[7].eff())))}} Harsh Instability is active past 1e60,000 empty sets.
Click on a Preset button to select the preset.
{{NumberSets[a*3-3+b].title}} Sets ({{NumberSets[a*3-3+b].symbol}}) {{formatWhole(player.integration.assignedSets[a*3-3+b])}} {{NumberSets[a*3-3+b].title.toLowerCase()}} set{{!player.integration.assignedSets[a*3-3+b].eq(1) ? "s" : ""}} assigned You need "Tuba's Gift" to sacrifice integer sets!
Sacrifice:
Set Sacrifice Values:
ℕ value: {{format(player.integration.setSacrificeValues[1])}} ({{format(NumberSets.sacrificeValueEffects(1))}}x g(n) and h(n) bases)
ℚ value: {{format(player.integration.setSacrificeValues[2])}} (^{{format(NumberSets.sacrificeValueEffects(2))}} slope gain)
ℂ value: {{format(player.integration.setSacrificeValues[3])}} ({{format(NumberSets.sacrificeValueEffects(3))}}x Z Empowerment strength)
ℝ value: {{format(player.integration.setSacrificeValues[4])}} (^{{format(NumberSets.sacrificeValueEffects(4))}} first 4 Y-Challenge rewards)
ℤ value: {{format(player.integration.setSacrificeValues[5])}} (^{{format(NumberSets.sacrificeValueEffects(5))}} Polynomial Factoring formula?????????) 𝔸 value: {{format(player.integration.setSacrificeValues[6])}} (^{{regularFormat(NumberSets.sacrificeValueEffects(6),4)}} point production exponent)
You have {{formatWhole(player.integration.holes)}} hole{{!player.integration.holes.eq(1) ? "s" : ""}}.
Each Perk Tree upgrade costs 1 hole, and tree upgrades cannot be respecced.
Use Shift to see costs for Integration Upgrades you haven't unlocked yet.
Production Tree:
Perk Tree:
The game is running {{format(TemporalPlane.totalEffect())}}x faster!
Uncertainty Exponent: ^{{regularFormat(new Decimal(TemporalPlane.oscillatingExponent()),3)}}
You have {{formatWhole(player.integration.holes)}} holes.
You must wait {{simpleFormatTime(player.integration.temporalPlane.timeJumpCooldown)}} (real time) before you can Time-Jump again!
Distribute Holes:
Generation of Temporal Plane powers is not affected by global speed.
You have {{formatWhole(player.integration.temporalPlane.buyables[a-1])}} t, producing {{format(TemporalPlane.generate(a-1))}} t power per second.
You have {{format(player.integration.temporalPlane.powers[a-1])}} t power.
Global Speed Multiplier: {{format(TemporalPlane.effect(a-1))}}x{{SinusoidalUpgrades.has(14) ? " (" + formatWhole(player.integration.temporalPlane.assigned[a-1]) + " holes)" : ""}}
Assign Holes:
The Automation Core will unlock at 15 Integrations.
Welcome to the Automation Core!
The Automation Core can perform a variety of automatic actions.
Automation Core activities and requirements for performing these activities can be modified in the inputs below.
You can also find here a comprehensive collection of all the autobuyers you've unlocked so far, which could be helpful.
Load Complex Upgrades at 60 UP:
Complete Complex Challenges Automatically:
If ON, start CC sweep at i
Enter Synthetic Division Automatically:
If ON, enter Synthetic Division for the 1st time at i until SE reached
Also, enter Synthetic Division for the 2nd time at i until SE reached
Grind Quadratics until Banked Quadratics > 1:
If ON, grind Quadratics at i
Automation Hub:
Points
Quadratic
Complex
Y-Quadratic
Polynomials
Integration
Sinusoidal
You have {{formatWhole(player.integration.limitScore)}} limit score, multiplying dx gain by {{format(Limit.scoreEffects(1))}}x and empty set gain by {{format(Limit.scoreEffects(2))}}x.
The Limit is a customizable challenge where you will be rewarded based on difficulty.
In order to gain limit score (LS), you have to be able to Integrate while inside The Limit.
You gain limit score based on three distinct factors:
Convergence Factor:
Set the goal to a number of your choice below. Try to get your i amount as close as possible to your goal without surpassing it.
If you are able to Integrate in The Limit with all Challenge Factors maxed, your Convergence multiplier will always be maxed!
Goal: i
Challenge Factors:
Based on your total Challenge Factor levels, your polynomial efficiency is powered by ^{{format(Limit.challengeFactorEffects(9))}} as well.
Endure harder Integrations and reach the goal(s) to get rewards!
Unlike all other Challenge types, each Integration Challenge works differently!
Click an Integration Challenge to enter it. Click it again to exit/finish. Note: Integrating will exit you from your current Integration Challenge.
You generate derivatives based on j(n), which is based on your variable amounts in The Limit with all Challenge Factors maxed.
You can purchase Derivative Functions to boost gain of all derivative tiers, and Derivative Buyables to boost other mechanics.
j(n) = {{format(Derivatives.jnFormula())}} Highest-Ever j(n): {{format(player.integration.derivatives.highestReached)}}
Your highest ever j(n) is generating {{format(Derivatives.gainFormula())}} {{player.integration.derivatives.highestReached.gte(5e6) ? "third" : "second"}} derivatives per second. Generation of derivatives is not affected by global speed.
You have {{format(player.integration.derivatives[0])}} antiderivatives.
You have {{format(player.integration.derivatives[1])}} derivatives.
You have {{format(player.integration.derivatives[2])}} second derivatives.
You have {{format(player.integration.derivatives[3])}} third derivatives.
Derivative Functions multiply the gain of all derivative tiers and do not consume limit score. f'(n) * g'(n) * h'(n): {{format(Derivatives.functions[1].eff().mul(Derivatives.functions[2].eff()).mul(Derivatives.functions[3].eff()))}}
You have {{format(player.integration.emptySets)}} meta-points, which provide the following effects:
Generators {{format(MetaGenerators.metaPointsEffects(1))}}x and ^{{regularFormat(MetaGenerators.metaPointsEffects(2),3)}}
{{format(MetaGenerators.metaPointsEffects(3))}}x RP gain
{{format(MetaGenerators.metaPointsEffects(4))}}x i gain
{{format(MetaGenerators.metaPointsEffects(5))}}x y2 gain
You have {{format(player.integration.derivatives[0])}} minibrots, multiplying Meta-Generators by {{format(Minibrots.effect())}}x. You have {{format(player.integration.derivatives[2])}} nanobrots, multiplying minibrot replication speed by {{format(Minibrots.nanobrotsEffect())}}x.
After you reach {{format(Minibrots.cap())}} minibrots, you cannot gain any more. Time to reach cap: {{formatTime(Minibrots.cap().div(player.integration.derivatives[0]).log(Minibrots.multPerSecond()).toNumber())}}
You have {{player.integration.derivatives[1]}} Riemann sphere{{player.integration.derivatives[1].eq(1) ? "" : "s"}}, multiplying Y generation by {{format(Minibrots.riemannSphereEffect())}}.
You need to reach the Minibrots cap to purchase a Riemann sphere.
You cannot purchase Riemann spheres in a Mandelbrot Challenge!
Endure harder Mandelbrots and reach the goal to get rewards!
Each Mandelbrot Challenge must be unlocked on the Fractal Arm with fractal spirals.
Once you generate 100% Challenge Power within a Mandelbrot Challenge, it is completed. Try to complete it as fast as you can!
Click a Mandelbrot Challenge to enter it. Click it again to exit it. Note: Entering the Mandelbrot will exit you from your current Mandelbrot Challenge.
You have {{formatWhole(player.triangles)}} triangle{{player.triangles.eq(1) ? "" : "s"}}.
You have {{format(player.trigFunctions.waves)}} trigonometric waves. ({{format(TrigFunctions.waveGen())}}/sec) Generation of Trigonometric Waves and Trigonometric Function powers is not affected by global speed.
{{TrigFunctions[a*3-3+b].title}}
You have {{format(player.trigFunctions.powers[a*3-3+b])}} {{TrigFunctions[a*3-3+b].powerName}} power. ({{format(TrigFunctions.powerGen(a*3-3+b))}}/sec)
{{TrigFunctions[a*3-3+b].effectDisplay()}}
Your unit circle is currently affecting mechanics in the following ways: {{UnitCircle.trigFunctionsEffectText(1)}} {{UnitCircle.trigFunctionsEffectText(2)}}
{{UnitCircle.secondEffectText()}}
You have {{format(player.pythTriples.essence)}} pythagorean essence. ({{format(PythagoreanTriples.peGen())}}/sec) Generation of PE is not affected by global speed.
To generate Pythagorean Essence (PE), d, e, and f must return a valid pythagorean triple.
Base PE Generation Formula: (ef)d/4 - 0.25 {{player.pythTriples.def[1].pow(2).round().add(player.pythTriples.def[2].pow(2).round()).eq(player.pythTriples.def[3].pow(2).round()) && player.pythTriples.def[1] != 0 && player.pythTriples.def[2] != 0 && player.pythTriples.def[3] != 0 ? "d, e, and f return a valid pythagorean triple!" : (player.pythTriples.def[1] == 0 || player.pythTriples.def[2] == 0 || player.pythTriples.def[3] == 0 ? "d, e, or f cannot be zero." : "d, e, and f do not return a valid pythagorean triple...")}}
You need to complete IC4x3 to extend this mechanic further.
{{format(PythagoreanTriples.barPercentage(1))}}%
QP Filled: {{format(player.pythTriples.bars[1])}} Your QP filled is multiplying Derivatives gain by {{format(PythagoreanTriples.barMilestones[1].eff())}}x
{{format(PythagoreanTriples.barMilestones[a].req)}}%: {{a == 3 ? PythagoreanTriples.barMilestones[a].desc() : PythagoreanTriples.barMilestones[a].desc}}
{{format(PythagoreanTriples.barPercentage(2))}}%
IP Filled: {{format(player.pythTriples.bars[2])}} Your IP filled is multiplying PE gain by {{format(PythagoreanTriples.barMilestones[5].eff())}}x
{{format(PythagoreanTriples.barMilestones[a+4].req)}}%: {{PythagoreanTriples.barMilestones[a+4].desc}}
{{format(PythagoreanTriples.barPercentage(3))}}%
PE Filled: {{format(player.pythTriples.bars[3])}} Your PE filled is powering the secondary Unit Circle effects by ^{{format(PythagoreanTriples.barMilestones[9].eff())}}
{{format(PythagoreanTriples.barMilestones[a+8].req)}}%: {{PythagoreanTriples.barMilestones[a+8].desc}}